Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.554
Filtrar
1.
BMC Cancer ; 24(1): 445, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38600469

RESUMO

BACKGROUND: Proprotein convertase subtilisin/kexin type 9 (PCSK9), the last member of the proprotein convertase family, functions as a classic regulator of low-density lipoprotein (LDL) by interacting with low-density lipoprotein receptor (LDLR). Recent studies have shown that PCSK9 can affect the occurrence and development of tumors and can be used as a novel therapeutic target. However, a comprehensive pan-cancer analysis of PCSK9 has yet to be conducted. METHODS: The potential oncogenic effects of PCSK9 in 33 types of tumors were explored based on the datasets of The Cancer Genome Atlas (TCGA) dataset. In addition, the immune regulatory role of PCSK9 inhibition was evaluated via in vitro cell coculture and the tumor-bearing mouse model. Finally, the antitumor efficacy of targeted PCSK9 combined with OVA-II vaccines was verified. RESULTS: Our results indicated that PCSK9 was highly expressed in most tumor types and was significantly correlated with late disease stage and poor prognosis. Additionally, PCSK9 may regulate the tumor immune matrix score, immune cell infiltration, immune checkpoint expression, and major histocompatibility complex expression. Notably, we first found that dendritic cell (DC) infiltration and major histocompatibility complex-II (MHC-II) expression could be upregulated by PCSK9 inhibition and improve CD8+ T cell activation in the tumor immune microenvironment, thereby achieving potent tumor control. Combining PCSK9 inhibitors could enhance the efficacies of OVA-II tumor vaccine monotherapy. CONCLUSIONS: Conclusively, our pan-cancer analysis provided a more comprehensive understanding of the oncogenic and immunoregulatory roles of PCSK9 and demonstrated that targeting PCSK9 could increase the efficacy of long peptide vaccines by upregulating DC infiltration and MHC-II expression on the surface of tumor cells. This study reveals the critical oncogenic and immunoregulatory roles of PCSK9 in various tumors and shows the promise of PCSK9 as a potent immunotherapy target.


Assuntos
Genes MHC da Classe II , Imunoterapia , Neoplasias , Pró-Proteína Convertase 9 , Pró-Proteína Convertases , Animais , Camundongos , Antígenos de Histocompatibilidade , Lipoproteínas LDL , Neoplasias/genética , Neoplasias/terapia , Pró-Proteína Convertase 9/metabolismo , Pró-Proteína Convertases/antagonistas & inibidores , Receptores de LDL/genética , Microambiente Tumoral
2.
IUCrJ ; 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38656309

RESUMO

This work focuses on molecules that are encoded by the major histocompatibility complex (MHC) and that bind self-, foreign- or tumor-derived peptides and display these at the cell surface for recognition by receptors on T lymphocytes (T cell receptors, TCR) and natural killer (NK) cells. The past few decades have accumulated a vast knowledge base of the structures of MHC molecules and the complexes of MHC/TCR with specificity for many different peptides. In recent years, the structures of MHC-I molecules complexed with chaperones that assist in peptide loading have been revealed by X-ray crystallography and cryogenic electron microscopy. These structures have been further studied using mutagenesis, molecular dynamics and NMR approaches. This review summarizes the current structures and dynamic principles that govern peptide exchange as these relate to the process of antigen presentation.

3.
J Neuroinflammation ; 21(1): 108, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38664840

RESUMO

BACKGROUND: Parkinson's disease (PD) is a neurodegenerative disorder that is characterized by the presence of proteinaceous alpha-synuclein (α-syn) inclusions (Lewy bodies), markers of neuroinflammation and the progressive loss of nigrostriatal dopamine (DA) neurons. These pathological features can be recapitulated in vivo using the α-syn preformed fibril (PFF) model of synucleinopathy. We have previously determined that microglia proximal to PFF-induced nigral α-syn inclusions increase in soma size, upregulate major-histocompatibility complex-II (MHC-II) expression, and increase expression of a suite of inflammation-associated transcripts. This microglial response is observed months prior to degeneration, suggesting that microglia reacting to α-syn inclusion may contribute to neurodegeneration and could represent a potential target for novel therapeutics. The goal of this study was to determine whether colony stimulating factor-1 receptor (CSF1R)-mediated microglial depletion impacts the magnitude of α-syn aggregation, nigrostriatal degeneration, or the response of microglial in the context of the α-syn PFF model. METHODS: Male Fischer 344 rats were injected intrastriatally with either α-syn PFFs or saline. Rats were continuously administered Pexidartinib (PLX3397B, 600 mg/kg), a CSF1R inhibitor, to deplete microglia for a period of either 2 or 6 months. RESULTS: CSF1R inhibition resulted in significant depletion (~ 43%) of ionized calcium-binding adapter molecule 1 immunoreactive (Iba-1ir) microglia within the SNpc. However, CSF1R inhibition did not impact the increase in microglial number, soma size, number of MHC-II immunoreactive microglia or microglial expression of Cd74, Cxcl10, Rt-1a2, Grn, Csf1r, Tyrobp, and Fcer1g associated with phosphorylated α-syn (pSyn) nigral inclusions. Further, accumulation of pSyn and degeneration of nigral neurons was not impacted by CSF1R inhibition. Paradoxically, long term CSF1R inhibition resulted in increased soma size of remaining Iba-1ir microglia in both control and PFF rats, as well as expression of MHC-II in extranigral regions. CONCLUSIONS: Collectively, our results suggest that CSF1R inhibition does not impact the microglial response to nigral pSyn inclusions and that CSF1R inhibition is not a viable disease-modifying strategy for PD.


Assuntos
Microglia , Ratos Endogâmicos F344 , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos , alfa-Sinucleína , Animais , Microglia/metabolismo , Microglia/efeitos dos fármacos , alfa-Sinucleína/metabolismo , Ratos , Masculino , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/antagonistas & inibidores , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/metabolismo , Pirróis/farmacologia , Aminopiridinas/farmacologia , Corpos de Inclusão/metabolismo , Corpos de Inclusão/patologia , Substância Negra/metabolismo , Substância Negra/patologia , Substância Negra/efeitos dos fármacos , Modelos Animais de Doenças
4.
Int Arch Allergy Immunol ; : 1-16, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38636483

RESUMO

INTRODUCTION: Major histocompatibility complex class II molecule (MHC-II) is pivotal in anti-tumor immunity, and targeting MHC-II in tumors may help improve patient survival. But function of MHC-II in the immunotherapy and prognosis of lung adenocarcinoma (LUAD) patients has not been thoroughly studied and reported. METHODS: We selected LUAD-related MHC-II genes from public databases based on previous literature reports. We identified different subtypes according to expression differences of these genes in different LUAD samples through cluster analysis. We used R package to conduct a series of analyses on different subtypes, exploring their survival differences, gene expression differences, pathway enrichment differences, and differences in immune characteristics and immune therapy. Finally, we screened potential drugs from the cMAP database. RESULTS: We identified two MHC-II-related LUAD subtypes. Our analyses presented that patients with cluster2 subtype showed better prognosis, higher immune scores, higher levels of immune cell infiltration and immune function activation. In addition, patients with this subtype had higher immunophenoscore, lower TIDE scores, and DEPTH scores. We also identified 10 small molecule drugs, such as lenalidomide, VX-745, and tyrphostin-AG-1295. CONCLUSION: Overall, MHC-II is not only a potential biomarker for accurately distinguishing LUAD subtypes but also a predictive factor for their survival. Our study offers novel insights into understanding of impact of MHC-II in LUAD and offers a new perspective for improving the accurate classification of LUAD patients and enhancing drug treatment.

5.
Front Immunol ; 15: 1349030, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38590523

RESUMO

Introduction: Parkinson's disease (PD) is a neurodegenerative and polygenic disorder characterised by the progressive loss of neural dopamine and onset of movement disorders. We previously described eight SINE-VNTR-Alu (SVA) retrotransposon-insertion-polymorphisms (RIPs) located and expressed within the Human Leucocyte Antigen (HLA) genomic region of chromosome 6 that modulate the differential co-expression of 71 different genes including the HLA classical class I and class II genes in a Parkinson's Progression Markers Initiative (PPMI) cohort. Aims and methods: In the present study, we (1) reanalysed the PPMI genomic and transcriptomic sequencing data obtained from whole blood of 1521 individuals (867 cases and 654 controls) to infer the genotypes of the transcripts expressed by eight classical HLA class I and class II genes as well as DRA and the DRB3/4/5 haplotypes, and (2) examined the statistical differences between three different PD subgroups (cases) and healthy controls (HC) for the HLA and SVA transcribed genotypes and inferred haplotypes. Results: Significant differences for 57 expressed HLA alleles (21 HLA class I and 36 HLA class II alleles) up to the three-field resolution and four of eight expressed SVA were detected at p<0.05 by the Fisher's exact test within one or other of three different PD subgroups (750 individuals with PD, 57 prodromes, 60 individuals who had scans without evidence of dopamine deficits [SWEDD]), when compared against a group of 654 HCs within the PPMI cohort and when not corrected by the Bonferroni test for multiple comparisons. Fourteen of 20 significant alleles were unique to the PD-HC comparison, whereas 31 of the 57 alleles overlapped between two or more different subgroup comparisons. Only the expressed HLA-DRA*01:01:01 and -DQA1*03:01:01 protective alleles (PD v HC), the -DQA1*03:03:01 risk (HC v Prodrome) or protective allele (PD v Prodrome), the -DRA*01:01:02 and -DRB4*01:03:02 risk alleles (SWEDD v HC), and the NR_SVA_381 present genotype (PD v HC) at a 5% homozygous insertion frequency near HLA-DPA1, were significant (Pc<0.1) after Bonferroni corrections. The homologous NR_SVA_381 insertion significantly decreased the transcription levels of HLA-DPA1 and HLA-DPB1 in the PPMI cohort and its presence as a homozygous genotype is a risk factor (Pc=0.012) for PD. The most frequent NR_SVA_381 insertion haplotype in the PPMI cohort was NR_SVA_381/DPA1*02/DPB1*01 (3.7%). Although HLA C*07/B*07/DRB5*01/DRB1*15/DQB1*06 was the most frequent HLA 5-loci phased-haplotype (n, 76) in the PPMI cohort, the NR_SVA_381 insertion was present in only six of them (8%). Conclusions: These data suggest that expressed SVA and HLA gene alleles in circulating white blood cells are coordinated differentially in the regulation of immune responses and the long-term onset and progression of PD, the mechanisms of which have yet to be elucidated.


Assuntos
Doença de Parkinson , Retroelementos , Humanos , Retroelementos/genética , Doença de Parkinson/genética , Dopamina , Antígenos de Histocompatibilidade Classe II/genética , Antígenos de Histocompatibilidade Classe I/genética , Antígenos HLA/genética , Genótipo
6.
Pharmacol Res ; 203: 107168, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38583689

RESUMO

Parkinson's disease (PD) is a common neurodegenerative disease characterized by progressive loss of dopaminergic neurons in the substantia nigra and the aggregation of alpha-synuclein (α-syn). The central nervous system (CNS) has previously been considered as an immune-privileged area. However, studies have shown that the immune responses are involved in PD. The major histocompatibility complex (MHC) presents antigens from antigen-presenting cells (APCs) to T lymphocytes, immune responses will be induced. MHCs are expressed in microglia, astrocytes, and dopaminergic neurons. Single nucleotide polymorphisms in MHC are related to the risk of PD. The aggregated α-syn triggers the expression of MHCs by activating glia cells. CD4+ and CD8+ T lymphocytes responses and microglia activation are detected in brains of PD patients. In addiction immune responses further increase blood-brain barrier (BBB) permeability and T cell infiltration in PD. Thus, MHCs are involved in PD through participating in immune and inflammatory responses.

7.
Adv Exp Med Biol ; 1444: 237-258, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38467984

RESUMO

Highly polymorphic human leukocyte antigen (HLA) molecules (alleles) expressed by different classical HLA class I and class II genes have crucial roles in the regulation of innate and adaptive immune responses, transplant rejection and in the pathogenesis of numerous infectious and autoimmune diseases. To date, over 35,000 HLA alleles have been published from the IPD-IMGT/HLA database, and specific HLA alleles and HLA haplotypes have been reported to be associated with more than 100 different diseases and phenotypes. Next generation sequencing (NGS) technology developed in recent years has provided breakthroughs in various HLA genomic/gene studies and transplant medicine. In this chapter, we review the current information on the HLA genomic structure and polymorphisms, as well as the genetic context in which numerous disease associations have been identified in this region.


Assuntos
Antígenos HLA , Antígenos de Histocompatibilidade Classe I , Humanos , Antígenos de Histocompatibilidade Classe I/genética , Antígenos HLA/genética , Polimorfismo Genético , Antígenos de Histocompatibilidade Classe II/genética , Haplótipos , Alelos
8.
Cells ; 13(5)2024 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-38474410

RESUMO

Dendritic cells (DCs) capture pathogens and process antigens, playing a crucial role in activating naïve T cells, bridging the gap between innate and acquired immunity. However, little is known about DC activation when facing Leishmania parasites. Thus, this study investigates in vitro activity of canine peripheral blood-derived DCs (moDCs) exposed to L. infantum and L. amazonensis parasites and their extracellular vesicles (EVs). L. infantum increased toll-like receptor 4 gene expression in synergy with nuclear factor κB activation and the generation of pro-inflammatory cytokines. This parasite also induced the expression of class II molecules of major histocompatibility complex (MHC) and upregulated co-stimulatory molecule CD86, which, together with the release of chemokine CXCL16, can attract and help in T lymphocyte activation. In contrast, L. amazonensis induced moDCs to generate a mix of pro- and anti-inflammatory cytokines, indicating that this parasite can establish a different immune relationship with DCs. EVs promoted moDCs to express class I MHC associated with the upregulation of co-stimulatory molecules and the release of CXCL16, suggesting that EVs can modulate moDCs to attract cytotoxic CD8+ T cells. Thus, these parasites and their EVs can shape DC activation. A detailed understanding of DC activation may open new avenues for the development of advanced leishmaniasis control strategies.


Assuntos
Leishmania , Animais , Cães , Linfócitos T CD8-Positivos , Células Dendríticas , Adjuvantes Imunológicos/metabolismo , Citocinas/metabolismo , Ativação Linfocitária
9.
J Biol Chem ; 300(5): 107205, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38519032

RESUMO

Major histocompatibility complex (MHC) class I molecules play an essential role in regulating the adaptive immune system by presenting antigens to CD8 T cells. CITA (MHC class I transactivator), also known as NLRC5 (NLR family, CARD domain-containing 5), regulates the expression of MHC class I and essential components involved in the MHC class I antigen presentation pathway. While the critical role of the nuclear distribution of NLRC5 in its transactivation activity has been known, the regulatory mechanism to determine the nuclear localization of NLRC5 remains poorly understood. In this study, a comprehensive analysis of all domains in NLRC5 revealed that the regulatory mechanisms for nuclear import and export of NLRC5 coexist and counterbalance each other. Moreover, GCN5 (general control non-repressed 5 protein), a member of HATs (histone acetyltransferases), was found to be a key player to retain NLRC5 in the nucleus, thereby contributing to the expression of MHC class I. Therefore, the balance between import and export of NLRC5 has emerged as an additional regulatory mechanism for MHC class I transactivation, which would be a potential therapeutic target for the treatment of cancer and virus-infected diseases.

10.
Curr Issues Mol Biol ; 46(3): 1651-1667, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38534723

RESUMO

Aminopeptidases are a group of enzymatic proteins crucial for protein digestion, catalyzing the cleavage of amino acids at the N-terminus of peptides. Among them are ERAP1 (coding for endoplasmic reticulum aminopeptidase 1), ERAP2 (coding for endoplasmic reticulum aminopeptidase 2), and LNPEP (coding for leucyl and cystinyl aminopeptidase). These genes encoding these enzymes are contiguous and located on the same chromosome (5q21); they share structural homology and functions and are associated with immune-mediated diseases. These aminopeptidases play a key role in immune pathology by cleaving peptides to optimal sizes for binding to the major histocompatibility complex (MHC) and contribute to cellular homeostasis. By their ability to remove the extracellular region of interleukin 2 and 6 receptors (IL2, IL6) and the tumor necrosis factor receptor (TNF), ERAP1 and ERAP2 are involved in regulating the innate immune response and, finally, in blood pressure control and angiogenesis. The combination of specific genetic variations in these genes has been linked to various conditions, including autoimmune and autoinflammatory diseases and cancer, as well as hematological and dermatological disorders. This literature review aims to primarily explore the impact of ERAP1 polymorphisms on its enzymatic activity and function. Through a systematic examination of the available literature, this review seeks to provide valuable insights into the role of ERAP1 in the pathogenesis of various diseases and its potential implications for targeted therapeutic interventions. Through an exploration of the complex interplay between ERAP1 and various disease states, this review contributes to the synthesis of current biomedical research findings and their implications for personalized medicine.

11.
Mol Biol Rep ; 51(1): 470, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38551799

RESUMO

BACKGROUND: The genetic improvement in growth and food habit domestication of largemouth bass (Micropterus salmoides) have made breakthroughs in past decades, while the relevant work on disease resistance were rarely carried out. Major histocompatibility complex (MHC) genes, which are well known as their numbers and high polymorphisms, have been used as candidate genes to mine disease-resistant-related molecular markers in many species. METHODS AND RESULTS: In present study, we developed and characterized 40 polymorphic and biallelic InDel markers from the major histocompatibility complex genes of largemouth bass. The minor allele frequency, observed heterozygosity, expected heterozygosity and polymorphic information content of these markers ranged from 0.0556 to 0.5000, 0.1111 to 0.6389, 0.1064 to 0.5070, and 0.0994 to 0.3750, respectively. Three loci deviated significantly from Hardy-Weinberg equilibrium, while linkage disequilibrium existed at none of these loci. CONCLUSION: These InDel markers might provide references for the further correlation analysis and molecular assisted selection of disease resistance in largemouth bass.


Assuntos
Bass , Animais , Bass/genética , Resistência à Doença/genética , Polimorfismo Genético/genética , Frequência do Gene/genética , Complexo Principal de Histocompatibilidade/genética
12.
Mol Oncol ; 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38520041

RESUMO

Mitochondrial metabolism and electron transport chain (ETC) function are essential for tumour proliferation and metastasis. However, the impact of ETC function on cancer immunogenicity is not well understood. In a recent study, Mangalhara et al. found that inhibition of complex II leads to enhanced tumour immunogenicity, T-cell-mediated cytotoxicity and inhibition of tumour growth. Surprisingly, this antitumour effect is mediated by succinate accumulation affecting histone methylation. Histone methylation promotes the transcriptional upregulation of major histocompatibility complex-antigen processing and presentation (MHC-APP) genes in a manner independent of interferon signalling. Modulating mitochondrial electron flow to enhance tumour immunogenicity provides an exciting new therapeutic avenue and may be particularly attractive for tumours with reduced expression of MHC-APP genes or dampened interferon signalling.

13.
Mol Ecol Resour ; : e13955, 2024 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-38520161

RESUMO

The major histocompatibility complex (MHC) is a highly polymorphic gene family that is crucial in immunity, and its diversity can be effectively used as a fitness marker for populations. Despite this, MHC remains poorly characterised in non-model species (e.g., cetaceans: whales, dolphins and porpoises) as high gene copy number variation, especially in the fast-evolving class I region, makes analyses of genomic sequences difficult. To date, only small sections of class I and IIa genes have been used to assess functional diversity in cetacean populations. Here, we undertook a systematic characterisation of the MHC class I and IIa regions in available cetacean genomes. We extracted full-length gene sequences to design pan-cetacean primers that amplified the complete exon 2 from MHC class I and IIa genes in one combined sequencing panel. We validated this panel in 19 cetacean species and described 354 alleles for both classes. Furthermore, we identified likely assembly artefacts for many MHC class I assemblies based on the presence of class I genes in the amplicon data compared to missing genes from genomes. Finally, we investigated MHC diversity using the panel in 25 humpback and 30 southern right whales, including four paternity trios for humpback whales. This revealed copy-number variable class I haplotypes in humpback whales, which is likely a common phenomenon across cetaceans. These MHC alleles will form the basis for a cetacean branch of the Immuno-Polymorphism Database (IPD-MHC), a curated resource intended to aid in the systematic compilation of MHC alleles across several species, to support conservation initiatives.

14.
Hepatol Res ; 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38536662

RESUMO

The recent clinical introduction of immune checkpoint inhibitors has improved therapeutic outcomes in patients with advanced hepatocellular carcinoma. However, these therapies targeting CD8+ T lymphocytes have a response rate of approximately 30%. In addition to CD8+ T lymphocytes, natural killer (NK) cells represent promising therapeutic targets for hepatocellular carcinoma, because they comprise 30%-50% of all lymphocytes in the liver and contribute to antitumor immunity. A recent meta-analysis revealed that the percentage of infiltrating NK cells in hepatocellular carcinoma correlates with a better patient outcome. Similarly, our previous genome-wide association study on chronic viral hepatitis showed that a single-nucleotide polymorphism of major histocompatibility complex class I polypeptide-related sequence A (MICA), a ligand to the NK activating receptor, plays a critical role in hepatocarcinogenesis. In this review, we summarize the mechanisms underlying the regulation of MICA and NK group 2D expression in chronic hepatitis. Furthermore, we describe recent reports on MICA single-nucleotide polymorphism-driven hepatocarcinogenesis. The suppression of MICA shedding could represent a promising approach for immunosurveillance, as increased expression of membrane-bound MICA achieved through the use of a MICA shedding inhibitor also enhances NK cell-mediated cytotoxicity.

15.
Front Immunol ; 15: 1285049, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38455061

RESUMO

Background: Downregulation of MHC class I expression and/or defects in the antigen presentation pathways are commonly reported in human cancers. Numerous studies previously have explored extensively the molecular mechanisms that underlie HLA-class I and Beta2-Microglobulin (B2M) downregulation. However, the techniques presently available to detect expression of MHC class I proteins lack the robustness, specificity and sensitivity needed for systematic integration and analysis in clinical trials. Furthermore, the dynamics of HLA-class I and B2M expression have not been comprehensively studied as a potential biomarker for immunotherapy. Methods: Using novel, validated, immunohistochemistry (IHC)-based methods for quantifying B2M and HLA-A in tumor samples from diverse cancer types, we have determined loss of B2M and HLA-A proteins in 336 archived, primary specimens and 329 biopsies from metastatic patients collected during Roche-sponsored Phase 1 clinical trials investigating novel immunotherapy candidates as monotherapy or in combination with CPI. Results: Up to 56% of cases with B2M or HLA-A loss were noted in the investigated tumor types. The frequency of loss was dependent on indication and stage of disease and revealed heterogeneous expression patterns across patients. B2M and HLA-A loss was increased in metastatic lesions compared to primary tumors, indicating selection of MHC class I low clones in metastatic and refractory tumor cells. High on-treatment B2M expression correlated with successful clinical outcome (RECIST), while high baseline B2M did not. A treatment-induced increase of B2M expression was noted in most of the patients with low B2M levels at baseline. The triple biomarker combination of B2M, CD8 and PDL1 strongly improved response prediction to cancer immunotherapy. Conclusion: Our results indicate that B2M and HLA-A loss occurs frequently in tumors and is reversed in most instances following immunotherapy which supports the conclusion that MHC class I loss is not the dominant resistance mechanism to CPI treatment. This investigation reveals a highly dynamic expression of HLA-A and B2M in tumors affected by indication, metastatic status, immunophenotype and immunotherapy treatment. Baseline expression levels of B2M on tumors may be of utility as a constituent of a biomarker panel used for selecting patients for immunotherapy clinical trials.


Assuntos
Neoplasias , Microglobulina beta-2 , Humanos , Microglobulina beta-2/genética , Antígenos de Histocompatibilidade Classe I/genética , Imunoterapia , Antígenos HLA-A
16.
Proc Biol Sci ; 291(2019): 20232519, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38503331

RESUMO

Despite decades of research, surprisingly little is known about the mechanism(s) by which an individual's genotype is encoded in odour. Many studies have focused on the role of the major histocompatibility complex (MHC) owing to its importance for survival and mate choice. However, the salience of MHC-mediated odours compared to chemicals influenced by the rest of the genome remains unclear, especially in wild populations where it is challenging to quantify and control for the effects of the genomic background. We addressed this issue in Antarctic fur seals by analysing skin swabs together with full-length MHC DQB II exon 2 sequences and data from 41 genome-wide distributed microsatellites. We did not find any effects of MHC relatedness on chemical similarity and there was also no relationship between MHC heterozygosity and chemical diversity. However, multilocus heterozygosity showed a significant positive association with chemical diversity, even after controlling for MHC heterozygosity. Our results appear to rule out a dominant role of the MHC in the chemical encoding of genetic information in a wild vertebrate population and highlight the need for genome-wide approaches to elucidate the mechanism(s) and specific genes underlying genotype-odour associations.


Assuntos
Otárias , Animais , Otárias/genética , Genótipo , Heterozigoto , Complexo Principal de Histocompatibilidade/genética , Odorantes , Regiões Antárticas
17.
Brief Bioinform ; 25(2)2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38487848

RESUMO

The major histocompatibility complex (MHC) encodes a range of immune response genes, including the human leukocyte antigens (HLAs) in humans. These molecules bind peptide antigens and present them on the cell surface for T cell recognition. The repertoires of peptides presented by HLA molecules are termed immunopeptidomes. The highly polymorphic nature of the genres that encode the HLA molecules confers allotype-specific differences in the sequences of bound ligands. Allotype-specific ligand preferences are often defined by peptide-binding motifs. Individuals express up to six classical class I HLA allotypes, which likely present peptides displaying different binding motifs. Such complex datasets make the deconvolution of immunopeptidomic data into allotype-specific contributions and further dissection of binding-specificities challenging. Herein, we developed MHCpLogics as an interactive machine learning-based tool for mining peptide-binding sequence motifs and visualization of immunopeptidome data across complex datasets. We showcase the functionalities of MHCpLogics by analyzing both in-house and published mono- and multi-allelic immunopeptidomics data. The visualization modalities of MHCpLogics allow users to inspect clustered sequences down to individual peptide components and to examine broader sequence patterns within multiple immunopeptidome datasets. MHCpLogics can deconvolute large immunopeptidome datasets enabling the interrogation of clusters for the segregation of allotype-specific peptide sequence motifs, identification of sub-peptidome motifs, and the exportation of clustered peptide sequence lists. The tool facilitates rapid inspection of immunopeptidomes as a resource for the immunology and vaccine communities. MHCpLogics is a standalone application available via an executable installation at: https://github.com/PurcellLab/MHCpLogics.


Assuntos
Visualização de Dados , Peptídeos , Humanos , Peptídeos/química , Antígenos HLA/genética , Antígenos de Histocompatibilidade , Aprendizado de Máquina , Análise por Conglomerados
18.
Brain Behav Immun Health ; 37: 100751, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38511151

RESUMO

The intricate relationship between sleep and leukocyte trafficking has garnered intense attention, particularly their homing dynamics to secondary lymphoid organs under normal and restricted sleep (SR). Considering the scarcity of information regarding circadian rhythms in major histocompatibility class I (MHC-I) expression in SR, we designed a study that assessed the temporal expression of MHC-I in murine lymph nodes and spleen and the subsequent effects of sleep recovery. Male C57BL/6, housed in 12:12 light/dark cycle, were grouped into control (C) and SR. SR was carried for one week before lymphoid tissues were sampled at selected time points and assessed for leukocyte number and MHC-I expression. SR resulted in 21% decrease in granulocyte and 24% increase in agranulocyte numbers. In C, MHC-I expression pattern in lymph nodes was bimodal and relatively higher than splenocytes during the animal's active phase (110.2 ± 1.8 vs 81.9 ± 3.8, respectively; p = 0.002). Splenocytes; however, showed a bimodal pattern upon SR, with higher protein levels during the rest than the activity period (154.6 + 36.2 vs 99.5 + 15.9, respectively; p = 0.002), suggesting preparedness for a potential infection. Furthermore, SR caused a significant drop in MHC-I expression at the onset of rest with 57% and 30% reduction in lymph nodes and splenocytes, respectively. However, the overall protein expression collectively taken from both lymphoid tissues remained stable, emphasizing its indispensable role in immunological homeostasis. This stability coincided with the restoration of protein levels to baseline after a short sleep recovery period, resembling a reset for MHC-I antigen presentation following a week of SR. Understanding the interplay between MHC-I expression and contextual factors could enhance treatment protocols, refining the efficacy and time precision of glucocorticoid-based therapies in immune modulation.

19.
Mol Ecol Resour ; 24(4): e13935, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38332480

RESUMO

Using high-throughput sequencing for precise genotyping of multi-locus gene families, such as the major histocompatibility complex (MHC), remains challenging, due to the complexity of the data and difficulties in distinguishing genuine from erroneous variants. Several dedicated genotyping pipelines for data from high-throughput sequencing, such as next-generation sequencing (NGS), have been developed to tackle the ensuing risk of artificially inflated diversity. Here, we thoroughly assess three such multi-locus genotyping pipelines for NGS data, the DOC method, AmpliSAS and ACACIA, using MHC class IIß data sets of three-spined stickleback gDNA, cDNA and "artificial" plasmid samples with known allelic diversity. We show that genotyping of gDNA and plasmid samples at optimal pipeline parameters was highly accurate and reproducible across methods. However, for cDNA data, the gDNA-optimal parameter configuration yielded decreased overall genotyping precision and consistency between pipelines. Further adjustments of key clustering parameters were required tο account for higher error rates and larger variation in sequencing depth per allele, highlighting the importance of template-specific pipeline optimization for reliable genotyping of multi-locus gene families. Through accurate paired gDNA-cDNA typing and MHC-II haplotype inference, we show that MHC-II allele-specific expression levels correlate negatively with allele number across haplotypes. Lastly, sibship-assisted cDNA-typing of MHC-I revealed novel variants linked in haplotype blocks, and a higher-than-previously-reported individual MHC-I allelic diversity. In conclusion, we provide novel genotyping protocols for the three-spined stickleback MHC-I and -II genes, and evaluate the performance of popular NGS-genotyping pipelines. We also show that fine-tuned genotyping of paired gDNA-cDNA samples facilitates amplification bias-corrected MHC allele expression analysis.


Assuntos
Técnicas de Genotipagem , Sequenciamento de Nucleotídeos em Larga Escala , Genótipo , Alelos , Técnicas de Genotipagem/métodos , DNA Complementar , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Expressão Gênica , Haplótipos
20.
Sci Rep ; 14(1): 3392, 2024 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-38337023

RESUMO

The Human leukocyte antigen (HLA) molecules are central to immune response and have associations with the phenotypes of various diseases and induced drug toxicity. Further, the role of HLA molecules in presenting antigens significantly affects the transplantation outcome. The objective of this study was to examine the extent of the diversity of HLA alleles in the population of the United Arab Emirates (UAE) using Next-Generation Sequencing methodologies and encompassing a larger cohort of individuals. A cohort of 570 unrelated healthy citizens of the UAE volunteered to provide samples for Whole Genome Sequencing and Whole Exome Sequencing. The definition of the HLA alleles was achieved through the application of the bioinformatics tools, HLA-LA and xHLA. Subsequently, the findings from this study were compared with other local and international datasets. A broad range of HLA alleles in the UAE population, of which some were previously unreported, was identified. A comparison with other populations confirmed the current population's unique intertwined genetic heritage while highlighting similarities with populations from the Middle East region. Some disease-associated HLA alleles were detected at a frequency of > 5%, such as HLA-B*51:01, HLA-DRB1*03:01, HLA-DRB1*15:01, and HLA-DQB1*02:01. The increase in allele homozygosity, especially for HLA class I genes, was identified in samples with a higher level of genome-wide homozygosity. This highlights a possible effect of consanguinity on the HLA homozygosity. The HLA allele distribution in the UAE population showcases a unique profile, underscoring the need for tailored databases for traditional activities such as unrelated transplant matching and for newer initiatives in precision medicine based on specific populations. This research is part of a concerted effort to improve the knowledge base, particularly in the fields of transplant medicine and investigating disease associations as well as in understanding human migration patterns within the Arabian Peninsula and surrounding regions.


Assuntos
Antígenos de Histocompatibilidade Classe II , Antígenos de Histocompatibilidade Classe I , Humanos , Emirados Árabes Unidos , Frequência do Gene , Antígenos de Histocompatibilidade Classe I/genética , Antígenos de Histocompatibilidade Classe II/genética , Complexo Principal de Histocompatibilidade/genética , Sequenciamento de Nucleotídeos em Larga Escala , Haplótipos , Alelos , Cadeias HLA-DRB1/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...